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THUS SPOKE THE GOOD SHEPHERD:GO FORTH
AND EXPLAINTHE STORMS

The Vice Chancellor,
The Deputy Vice Chancellor,

The Registrar,

The Librarian,

The Bursar,

Provosts here present,

The Dean of Faculty of Science,
Deans of Faculties here present,
Distinguished Academic Colleagues,
Distinguished Non-Academic Colleagues,
Distinguished Guest and Friends,
My Dear Students,

All protocol observed.

1.0 Introduction

1.1 Preamble

Mr Vice Chancellor Sir, it is with a deep sense of gratitude to the
Almighty God, the Alpha and the Omega that I stand here today to
Eresent my inaugural thesis: Thus Spoke the Good Shepherd: Go

orth and Explain the Storms. I am also grateful to the University for
approving my request to give a narrative of my major contributions
t}(; the body of scientific knowledge. In this light, I will assert upfront
:hat these contributions which are in the main on the explanation of

be mechanisms responsible for equatorial ionospheric radio wave
5tiw sorption and the ionospheric storm phenomena are steeped in the
4 :in phenomena of fertility and birth which give life through love

I é)am. But let me begin with Psalm 23: “The Lord is My Shepherd

“an a homl fi : .9 99 )
B iari: Rilke_l y from it, as well as the poem: Autum by Rainer

rd
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Psalm 23
The Lord is my shepherd, what more do I need?
In green pastures he lets me rest.
To quiet streams of water he leads me,
And revives my failing spirit.
He leads me along the right paths
ever true to his name.

Even though I walk through the valley of the shadows of death,
No harm would I fear, for you are there by my side.
With your rod and your staff you give me comfort.

You prepare a banquet for me

In the presence of my foes.

You anoint my head with oil;

my cup is overflowing.
Only goodness and kindness will follow me
all the days of my life,
I shall dwell in the house of the Lord
for ever and ever.

The homily: A Soprano and an Old Catholic Monk were invited to
individually give rendition of Psalm 23 at a Christmas carol. Taking
the lead, the soprano rendered Psalm 23 toa standing ovation. Andat
his turn, the Monk sang the Psalm in a coarse voice; when he
finished, there was dead silence in the hall. In the midst of this
silence, the soprano rose to his feet and said to the audience:
understand the reason for your earlier standing ovation and this your
overwhelmin%( silence. The motivation is that I only touched your
ears with my knowledge of the lyrics of Psalm 23, while the Mon
touched your hearts because he knows the good shepherd; | nO%
know that it is only the good shepherd that can touch our hearts - et
I must add here that this homily 1s at the heart of my narrative. mdthe
me wager that for a scientist, there is an eternal struggle betweel ol
vision of the fgood she%herd that is unbounded and the vis107! fm
that is imperfect. It is his choice to submit his talent to the VI 10
the good shepherd or that of man.
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Now the poem:
Autumn

The leaves are falling, falling as if from far up,
as if orchards were dying high in space.
Each leaf falls as if it were motioning "no."

And tonight the heavy earth is falling
away from all other stars in the loneliness.
We're all falling. This hand here is falling.
And look at the other one. It's in them all.

.And. yet there is Someone, whose hands
infinitely calm, holding up all this falling.

Mr Vice Chancellor Sir, I needed the poem Autumn to reso

today because at the beginning of my career I found solarégt?nhteﬁg
words of this inherently "mystical" work of Rainer Maria Rilke—the
Bohemian-Austrian poet and novelist because it invoked
unforgettable metaphors that gave me indescribable hope in times of

profound anxiety while I longed for the good ; :
with the hymnist in “Come L% e t%l%?; shepherd;for I believed

The clouds shall send a Saviour
Like a softly falling rain,
Yet mighty in his power,

To free us from chains,

His shield will be compassion,

His weapon liberty

Indeed his weapon is i

chosen ti pon is liberty because the good shepherd in his own
JOurr?:ltlsrgce{‘ one morning in mid-1999, led me out%f Egypt into the
along the isllon of the University of Lagos Library, and as I walked
looked back €, a Journal fell at about four metres behind me. As I
i , athought came upon me to go back, pick and return it to

n the shelf. I accepted the thought, pick it up but found out
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from the Journal's Call Mark that its shelf position is abg
metres from where it was on the floor; much more than that f[ fouy
found that the journal was a new library acquisition- a donatic alsg
the World Bank. At this point, the mysterious happened as at 1, from
attempt, the journal opened onto a seminal work on geom Y ﬁr_St
storms in the mid latitudes of the Earth that used high . Shetie
radio absorption data, and of which I had corresponding dat: ‘;(‘)ermy
ec%latorial region of Africa. This sin%ular ineffable en ’*ur the
which I believe was in resonance with the vision of God 2 In y
filled with the message: “Go forth and explain the storms” th i‘ea\t%as
faced in my hands tools to address one of the unsettled problemg o
ionospheric phenomena studies- the influence of geon 1gnet1.n
storms on radio wave absorption in the equatorial ionosphere anl(ci
eternally changed my research direction as well as career al
University teacher, and made this day possible. ; k
Now, let me grinhg 1;18 to spee?1 wﬁth the images from my research
Cslgggg%le’aﬁller.w ehuii dLpSIE Ay rjor contribigy Figure 1.2. Top: Aurora during the aftermath of a large geomagnetic storm on
¥oveé111(lier dZO, 2003 © Stan Solomon. Bottom: Aurora on October 30, 2003©
om un

Figurg 1.1: Origin of Space Weather: The space weather environment €
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Figure 1.3: Impacts of space weather © L. J. Lanzerotti, Bell Laboratories,
Lucent Technologies, Inc.

1.2 The Background Information

Mr Vice Chancellor Sir, my field of research is ionospheric physics
and radio wave propagation while my specialization is mainly in the
area of space weather (Figures 1.1, 1.2 and 1.3). Space weather
encompasses the conditions on the sun and in the solar wind,
magnetosphere, ionosphere, and thermosphere that can influence the
performance and reliability of space-borne and ground- based
technological systems and can endanger human life or health.
Adverse conditions in the space environment can cause disruption of
satellite operationis, communications, navigation, and electric power
distribution grids, leading to a variety of socioeconomic losses
(United States of America's National Space Weather Program
Strategic Plan, FCM-P30-1995).
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The definition of space weather that covers changes in the space
environment and the effects that those changes have on an array
man's activities on Earth highlights the importance of studying Space
weather which is twofold: One is academic as it is considered a
central part of space science. The other is technological as it
represents a concern to man especially in the developing countries
were various national development efforts are increasingly
dependent on space-borne and ground-based technological systems
which are susceptible to space weather. This aspect of space weather
compels the need for a fgll understanding of the behaviour of the
jonospheric storm phenomena with regards to the latitudinal and
longitudinal dependence of the ionosphere-thermosphere system’s
response to major solar events. This need constitutes the driving
concept of my research efforts. {h

Mr Vice Chancellor Sir, in a world of astonishing changes, the most
critical duty of any Government remains the security of its people.
This is because national security is an important pre-conditioh for
sustainable development. And an important vehicle for governments
towards achieving national security is the engagement of people
through proEaganda and persuasion which can be cost-effectively
done through radio communication on long distance high frequency
(HF) (3-30 MHz) point-to-point broadcasting (often referred to as
shortwave). Pertinently, this mode of communication is dependent
on the ionosphere (Figure 1.4) for the propagation of radio signals
beyond the horizon. Furthermore, the military worldwide rely on
High Frequency (HF) radio systems for coordinating soldiers in
times of peace, war or terrorists’ strike. This is because
communications by satellite are vulnerable to jamming and physical
damage. Also, the availability of satellite channels for the military is
limited and their supporting infrastructure are expensive to procure
as well as sustain.

0
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tuation leaves the ionospheric HF radio communication a
:’communication backbone but with the requirement of
ndable knowledge of the propagation characteristics of the
1eric phenomena,; this is because the operational efficiency of
mmunications systems is largely dependent on the detailed
ledge of the diurnal and seasonal variations of radio wave

sabsarption. These phenomena are crucial in frequency allocation by

By

bothmternational-and local regulators on the one hand and planning

_ ofbroadcast timetables on the other hand by broadcasting services

suehi‘ds the BBC World Service, Voice of America (VOA), Voice of

~Nigeria (VON) and Federal Radio Corporation of Nigeria (FRCN),
“as well as the military worldwide. Otherwise there will be chaos and

radio communication operations would be grossly inefficient due to
interference and excessive ionospheric radio wave absorption.

Table 1.1 shows the BBC World Service broadcast frequenéy
schedule for West Africa. Observe that the broadcast frequencies

73 Inaugural Lecture

vary with the time of the day in order to avoid excessive radio wave
absorption that will arise from inappropriate frequencies. Table 1.1
and Figure 1.5 which presents the real time lonospheric map of the
world underscore the importance of the knowledge diurnal and
seasonal variation of radio wave absorption in any region of the
world.

From To Days Frequency (kHz)
05:00 06:00 Daily 5875
05:000 07:00 Daily 6005

06:00 07:00 Daily
06:00 08:00 Daily 12095

07:00 08:00 Daily

s

11770, 13660, 17830

16:00 18:00 Daily 17830
17:00 18:00 Daily 17780
17:00 20:00 Daily 15400
18:00 20:00 Daily 13660
18:00 21:00 Daily 11810

20:00 21:00 Daily S04 &, 12695
21:00 22:00 Mon-Fri 9915,11810, 12095

Table 1.1: BBC World Service - Radio Frequency Guide for West
Africa ©(www.bbc.co.uk/worldservice/schedules/frequencies)
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However, there existed, at the beginning of my career, paucity of this
knowledge in the equatorial region of Africa (Figure 1. 6) where
Nigeria is located. This dearth of scientific knowledge of the
equatorial ionosphere was due to on the one hand the near non-
availability of such facilities as rocket-borne experiments and
incoherent scatter radars and on the other hand limited number
ionosonde and GPS receiver stations. While in the middle and high
latitudes, most of the complexities of ionospheric HF radio wave
absorption appear mostly resolved due to the fact that the lower
ionosphere in these regions have been the subject of extensive

studies using vast arrays of ground-based and rocket-borne
experiments. Figure 1.7 while presenting a maps of SPIDR
ionospheric stations underscores my point.
o : il
= ; Yoo uu - .
uu © L] [<} "
& it & " wu [“ Rk R "-’%{‘»“ - =]
NORFH @ FoeBeE® STV @
E’x-,itmf;r': 6, = ‘3»& = L “ e
B oe ™ a® e . ¥ - Tit %3
! » € o 5 t&w & g ©
I Figure 1.5. Real Time lonospheric Map ©Australian Government Bureau of B AFRICA - & g B
;‘ Meteorology Weather Services http://www.sws.bom.gov.au/HF_Systems/6/5 % S 8 - O
| - 5 ot i} 1‘4-.‘1"—3}'1‘1‘3& e
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Figure 1.7. SPIDR Ionospheric Stations during 1980-2014 . ©
http://spidr.ngdc.noaa.gov/spidr/ :
According to Chukwuma (2000a), these studies in the mid and";h_igh
L e . latitudes have provided valuable information concerning
i ool ionospheric structures, processes and formation which has resulted
in the improvement of long distance HF communication ‘and
frequency management in these regions. ¥

In this regards, the improvement of the operational efficiency of
radio communications systems in the equatorial region of African, I

3 ﬁ,\\ 1

¥l

I Low Latitude/Equitorial Region. Left Picture
I ©uksmg.com Right Picture©Wcflunatall.com
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insisted then, demanded a detailed study of the ionospheric radio
wave absorption at the equatorial region in order to unravel the
phenomena of (i) frequency and seasonal dependency of HF radio
wave absorption, and (i1) geomagnetic storm after-effects, on radio
wave absorption in the equatorial region. The results of these
investigations, I argued, would provide the users of the HF systems
in the equatorial rec?lon in general and Nigeria in particular requisite
scientific knowledge for technological innovation and optimal
performance of their radio communication hardware in the form of
effective and power saving radio communication. :

My vision implied innovation: firstly, I had to overcome the
constraint of unavailability of sustainable research facilities by
building and using the A3 method (Schwentek, 1976). Let me point
out here that this method involves the measurement of field strength
of radio waves that are obliquely reflected from the ionosphere and
its multi-frequency version has been elucidated in my works
((Chukwuma, 1999a, 2000, 2001a, b; Chukwuma and Olatunji,
1997, 1999). But for insightful needs of my esteemed audience, |
hereby present the essential details. I want to also add that the setting
up of my Multifrequency A3 Experiment held up my investigations
for a few years but that is the lot of a pioneer and I am glad that Third
World researchers could always circumvent the constraint of non-
availability of sustainable research facilities by using my
experimental procedure.

2.0 Experimental Method

The A3 experimental method, following our modifications, depends
essentially on: (i) Availability of Radio Transmission and Selection
of Receiver Antenna (ii) Determination of Modes of Propagation and
(ii1) Determination of Absorption and Data Analysis.

73" Inaugural Lecture (12)—
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Figure 2.1.Transmitting Antenna (Log-periodic) ©all-antennas. Inform; Right:
Receiving Antenna (Half-wave dipole) © radiosurvivalist.com.

2.1  Availability of Radio Transmission and Selection of
Receiver Antenna

The A3 method compels an identification of HF transmitting stations
with reliable broadcast schedule. Table 2.1 presents my
Transmission Data and indicates the location of Transmitting and
Receiver antenna, Radio frequencies and Transmission hours of the
Stations.

Transmitter | Geographical | Geomagnetic | Transmitter | Hours of Type and | Out lonospheric
Location Coodinates | Coodinates Frequency | Transmission | Orientation | Power | Point
(MHz) (LT) of (KW) | coordinates
Transmitting
Antenna | Py i i g
Cotonou 243°E, T5.8°E 4.87 0600-1005 Log 50 2.90° E, 6.
6.35° N 9.10°N 1700-0100 Periodic 45°N
Horizontal
Lomc 1.20° E. 74.13°E | 5.047 0600-1005 Log 50 2.30° Igs
6.27°N 9.21°N 1700-0100 Periodic 6.40° N
Horizontal
Kaduna 7.5 E 81.60°E 6.09 0530-2305 Half wave 100 5.45° 12
10.50° N 12.26°N Non- R.52° N
directional 4.43° E,
o) e 7.54° N
Libreville 9.45°E, 81.3°E | 9.60 0530-2305 Half wave 200 6.43° E;
0.38°N 1.99°N 347°N
4.92° E;
) R )l o L e
Ascension -1437° E, 56.80°E 15.40 0800-0915 Half wave 200 -5.4s5° E,
Island -7.95°N -2.15°N 1000-1230 0.70° N
1600-2400 =1n052 0 epiE;
2.93° N

Table 2.1. Transmission Data (Chukwuma and Olatunji, 1999)
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My receiver dipole antenna was located in Lagos, Nigeria with

eographical coordinates (3.40° E, 6.55° N) and geomagnetic
%atitude (76.80 °E, 9.12°N) (Figure 2.2). It is important to point out
that simultaneous transmission is crucial in multi-frequency A3 field
strength measurements but diurnal and seasonal variations of radio
wave absorption in the ionosphere posed a limiting condition in
regards to my use of commercial transmitters. The BBC frequency
schedule (Table 1.1) indicates thisissue.

SASCENDON 3 Esed 300w,
3LAND ;

Figure 2.2. A map showing transmitter and receiver locations for the A3 method
circuits in West and Central Africa (after Chukwuma V. U.,2001a)

However, as shown in Table 2.1, a small window oftime around 1000
LT was the only period when it was possible for me to carry out the
multi-frequency absorption measurements. I want to remark at this
point that the discovery of thel000 LT window for field strength
measurement was remarkable in that the 1000 LT period being
outside sunrise was cait)able of indicating real changes in electron
density due to external drivers. It is known that sunrise period is
manifested by a rapid increase in electron temperatures and a less
rapid increase in 1on temperatures at all altitudes. In a plasma

rd b na - ( |
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plasma distribution that tends towards equilibrium, a sharp increase

in particle temperature results in a redistribution of the plasma

(Soicher, 1972) which would affect our results. Now, with the initial
problems of quality control and integrity of field strength data
resolved, I undertook the measurements from April 1991 to
December 1992 using Eddystone Communication receiver model
1830/1 (Figure 2.3) and BBC Servogor 200 pen recorder.

JONOSMILAL
PRPPSTLE il b L L TT e P
»

Y .,

) G AL T

" MODEL 1830 SERIES |

e e ) e

\
N\
SLTWAYE N\

N

GROUNIWAYE

| —

b -~
KR FONE
<SR DISTANCE -

Figure 2.3. Left: A3 Radio wave propagation ©reivilo.co.za; Right: Eddystone
Communication Receiver ©ORadiomuseum.org

2.2  Determination of Modes of Propagation

Circuit Frequency | Mode | Elevation | Rx Antenna | Tx Antenna | fCos o
(MHz) Angle Gain (db) Gain (db) (MHz)
Cotonou-Lagos | 4.87 1E 63.4 70.0 9.0 4.37
B ok bl L 75.0 90.0 7.2.. 1472
Kaduna-Lagos 6.09 2E 34.93 26.0 0.64 3.49
2F 62.60 88.0 0.84 5.41
Libreville-Lagos | 9.60 1E 14.80 10.0 0.18 2.35
IF 34.92 26.0 0.64 5.50
2E 26.80 28.0 0.54 4.33
2F 54.39 78.0 0.80 7.80
AsIsland-Lagos | 15.40 2E 10.76 6.0 0.04 2.88
2E 27.76 14.0 0.56 .17

" Table 2.2. Possible modes of radio wave propagation on the circuits (Chukwuma

and Olatunji, 1999)

rd f_\
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Crucial to a reliable field strength measurement for HF, radio wave
absorption investigatipn is the determination of the dommant modcg
of propagation of radio wave from a number of possible modes of
propagation of radio wave on the circuits. Table 2.2 shows the
possible modes for the circuits at 1000 LT. From these possible
modes, the dominant mode for a circuit, which is defined as the mode
that has a higher relative antenna gain among the possible modes,
was determined by using the antenna diagram of each respective
transmitter and receiver and applying the relationship:
E, Gy Gry S;

—=——X——X— Im 2.1
F, Gu Grz Sy o

where E, and E; are signals received for any two modes ¢, and ¢, are
respectively the relative antenna gain for the receiving and
transmitting antenna. s’ is the half'path length of propagation and m

is the number of hops in a multi hop circuit.

Using (2.1) and Table 2.2, we obtained the dominant modes
(Table 2.%) for the A3 circuits that are under consideration.

A3 Circuits Frequency | Mode
(MHz)
Cotonou-Lagos | 4.87 1F
Kaduna-Lagos | 6.09 2F
Libreville-Lagos | 9.60 2F
As Island-Lagos | 15.40 2F

Table 2.3. Dominant modes of propagation on the circuits (Chukwuma
and Olatunji, 1999)

2.3  Determination of Absorption and Data Analysis

The absorption of HF radio wave for any HF circuit, when the height
of reflection of the radio wave is the same for both daytime and
nighttime propagation is:

L(t)= ZOLagNF’:dB (2.2)

(16 L
73 inaugural Lecure SERED)

when the heights of reflection are different for daytime and
nighttime propagation is:

L(f] = LOQlo [Eus;tkakb EtS;]dB (23)

where E,, is the nighttime field strength when there is no absorption
field, E, is the daytime field strength s’ is the half path length of
propagation, The subscription n and t represent nighttime and
daytime respectively. The factors K and K » are calculated from the
relative gains of the transmitting and receiving antennas respectively
in the direction of the dominant mode for daytime and nighttime
propagation.

Equation (2.2) was used to determine absorption for 15.40 MHz
while Eq (2.3) was used to determine the absorption at 4.87, 6.09
and 9.60 MHz. Furthermore, the values of £,, used in Eqgs (2.2)
and (2.3) as reference field strength are determined as accurately
as possible from statistical analeis of individual day's nighttime
signal strength recorded throughout the duration of measurement
(Chukwuma, 2000).

¥

2.1 Initial Results

Radio wave absorption, L in the ionosphere, whose knowledge is
crucial for radio communications, can be related to the solar zenith
angle by the expression (Appleton and Piggott, 1954)

L=ACos"8g (2.4)

where n = index ¢ = solar zenith angle and A = constant.

It is pertinent to note that the only fact that is certain in regards to
Equation 2.4 is that at first approximation, optimal radio wave
absorption in the ionosphere occurs when the solar radiation is at
right angles to the centre of the region being irradiated. That is when
the Sun is overhead at local noon. Beyond this point, the physics
becomes complex, and it's noteworthy that radio wave absorption
measurements are diurnal and mostly outside noon.

Now at low latitudes (Equatorial region) where there is paucity of
valuable information concerning ionospheric structures, earlier
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i . oo using vertical sounding (Al Method) found that the
;%\gzsrtl;ﬁ%%ﬁ?liig;]?lgm Equation (2.4) has a value 1.0 for the diurnal
variation of absorption and a value of 1.7 for seasonal variation (
Skinner, 1965; Gnanalingam, 1969). Also using a single frequency
A3 data, Shamsi (1986) ound a value of about 2.1 for the seasonal
index. Now, these results were rcchctlvcly found to predict hlgher‘
values of absorption than are actua ly observed during the months of
May-September (Skinner and Wright, 1956; Mbipom, 1971;
Gnanalingam, 1974; Shamsi, 1986), and as such are of limited
technological value.

Inspired by the failed attempts to explain the discrepancy between
empirical predicted and observed values of absorption on the basis of
seasonal modification of the electron density profile caused by
changes in atmospheric composition (Gnanalingam, 1974) and
changes in the ionizing solar flux and seasonal variation of solar
zenith angle, I now set out to explain the underlying phenomena of
the equatorial radio wave absorption using my A3 data. The results
(Figure 2.4) of this effort, unlike the earlier ones, showed clearly that
thoygh seasonal variation of HF radio wave absorption may be
semiannual at low frequencies, it 15 not semiannual at higher
frequencies. This result implied the modification of extant theories.

® 400 MHr
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Figure 2.4 Left: Seasonal variation on different radio wave frequencies; Right:
Determination of seasonal index n (after Chukwuma, 1999a).
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Correspondingly, I found that the law, g, = 4 ¢ps™@ , did notappear
to adequately explain seasonal variation 1n the equatorial region (
Chukwuma, 1999a, Chukwuma and Olatunji, 1997). Furthermore,
we also found that absorption at higher frequencies are less
amenable to theoretical interpretation t%lan the lower frequencies
(Chukwuma and Olatunji, 1997). It is noteworthy that I had to rely
on an earlier seminal work which had reported that in trying to
explain the seasonal behavior of absorption, the variation of
absorption with height of the recombination coefficient cannot be
neglected (Nicolet, 1951). And according to Takar and Friedrich
(1988), theoretical models of ion chemistry predict a decrease of
effective electron recombination with increasing ion production. At
low altitude, this is due to a shifting away from cluster ions that have
large recombination coefficient towards the primary molecular ions
with significant smaller recombination coefficient. This would
result in high radio wave absorption in the equatorial region
(Chukwuma and Olatunji, 1997). This was good thinking.

On the issue of frequency dependency of HF radio wave absorption,
[ noted that according to Appleton (1937), the total absorption
suffered by HF radio waves which have travelled through a
Chapman layer, and have been reflected without deviative losses
from higher layer, is given as:

Ame? 3
B 4.3( s )(COS;()?NOI{,H/(-_IZ (2.5)
me

Where e and m are the electronic charge and mass respectively, ¢ the
velocity of light,  the Sun's zenith angle, , the maximum electron
density at noon _, the electron collisional ffequency at the height of
maximum ioniZdtion at noon for ¥ =0,  the angular frequency of
the radio wave and H is scale height.

Equation (2.5) could be written in the generalized empirical form:

L=Af" (2.6)

Atconstant y; where 4 is a constant
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According to the magneto-ionic theory n= 2 in Equation (2.6), but in
the equatorial region, using observed data, Skinner and Wright
(1956) and Gnanalingam (1974) showed that n is nearly 1.0 while
Oyinloye (1975) concluded that n has a value of 2.4. In the light of
the discrepancies between theory and experimental results on the one
hand and among experimental results themselves, it was obvious to
me that the frequency dependence of HF radio wave absorption is a
research problem that required a detailed solution which I need to
provide from the analysis of my multfrequency absorption data.

Interestingly, the preliminary analysis of my data gave the frequenc
index a range of values 0.8 n < 2.4 (Chukwuma, 2000a) whicﬁ
appeared to simultaneously validate the earlier results of Skinner and
Wright (1956), and Gnanalingam (1974) on the one hand and
Oyinloye (1975) on the other hand. This result while authenticatin
my A3 experimental protocol did not to me fully answer my researcﬁ
problem and necessitated a further analysis of my absorption data
which this time showed that the ionospheric absorption in the
equatorial region appear to follow the law:

, 2.7)
=B+ Af~*

where B and A are constants

The result as indicted in Eq (2.7) implies that ionospheric absorption
consists of a component which is independent of radio wave
frequency. Furthermore, the results showed that solar activity did not
affect frequency dependency in the equatorial region (Chukwuma,
2000). It was heartwarming that these results were hailed at that time
as one of the best work coming out of contemporary Africa. These
results are presented in Figures (2.5) and (2.6).
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of frequency dependence (after Chukwuma, 2000).
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Mr. Vice Chancellor Sir, the influence of geomagnetic activity on
radio @bsorption in the ionosphere also remained one of the unsettled
problems in ionospheric phenomena studies. For example, Appleton
and Piggott (1954) had unsuccessfully sought a relationship between
high absorption and enhanced geomagnetic activity. However, using
limited data obtained durinﬁ winter, Piggott (1964), in a subsequent
work, appeared to establish the dependence of absorption at high
latitude on geomagnetic activity. But, it is noteworthy that Piggott
(1964) was not quite convinced of his results in regards to the real
nature of the relationship between geomagnetic activity and radio
wave absorption, hence he suggeste§ that further work needed to be
done to show whether the reported winter absorption is associated
with' more of less continuous particle activity or whether there is
storage of negative ions in the lower atmosphere or whether the
absorption is due to other causes (Piggott, 1964).

oo
Also:

sults:from A 1 investigations of ionospheric radio absorption
juatorigt.did not teveal#ny relation between absorption and
eomaguctic activity. FOr example, Gnanalingam (1974) while
“establishing this fact as it were then, did not offer any explanation as

to, the"probabl€ cause it' of this phenomenon. And to proffer an

“. explangtion, ] éxamined my A3 absorption data for any possible

influence of geomagnetic activity and the results (Figures 2.7 and
2.8) 1 bbtained went on to confirm that geomagnetic activity has no
significant effect on the equatorial HF radio wave absorption and
appear to indicate that geomagnetic activity does not influence
ionization in the lower F- and E-region of the equatorial zone
(Chukuma, 1999b).

At this point, | want my esteemed audience to note that the results of
Chukwuma (1999b) and Gnanalingam (1974) which did not appear
to reveal any relation between HF absorption and geomagnetic
activity only supported respectively the results of Lauter and Knuth
(1967) that reported that there are no storm after-effects in
ionospheric HF radio wave absorption at all at 45 °N, the results of
Beynon and Williams (1974) which appear to show that enhanced
absorption has a rather low latitude limit of about 37 °N and the work
of Marcz (1983) that showed that storm related enhanced absorption
can be traced only to a geomagnetic latitude of 25 °N.

poy g
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However, I felt that these results were neither satisfactory nor
conclusive against evident practical HF radio communication
F_roblems that are experienced during storm, but I was helpless and
imited by library resource and research funding. In those days,
there were no TETFUND and physical science basic research was a
trip to Siberia.
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2.2 Coming of Age: Geomagnetic Storms

My esteemed audience, permit me to remark at this point that
following my divine encounter at the Journal Section of the
University of Lagos Library, the philosophical underpinning of my
research work in the equatorial region became embedded in the
philosophical works of Kuhn (1962), and Popper's Demarcation
Rule (Popﬁer, 1969). According to Kuhn (1962), though the world
does not change with a change of paradigm, the scientist afterwards
works in a different world. This meant a totally changed reference
frame of thinking; thinking out of the box. And according to Popper's
Demarcation Rule (Popper, 1969), a statement or system of
statements, in order to be ranked as scientific, must be capable of
conflicting with possible or conceivable observations. This implied
that my scientific investigations and results must exhibit character;
my goal then will not be to improve on what has been done before but
to totally reimagine it. In this light, as I am going to further explain, I
sought a paradigm shift and made a profound observation that the
earlier results on geomagnetic storm effect on equatorial region
lonospheric absorption did not appear to be conclusive because the
criterion for selecting the geomagnetic storms, X Kp=27 (4p=30) in
the aforementioned works lumped weak, moderated and strong
storms together and may not be quite appropriate in filtering out

tadio wave responses in the equatorial region (Chukwuma 2001a)

because after-effects milg~| t be observed mainly after storms with
Ap> 60 (Lauter and Knuth, 1967).

Moving forward, I found that in the mid-latitudes, Bourne and
Hewitt (1968) and Marcz, (1976) had showed that the relationship
between geomagnetic activity and absorption is not straightforward
because a strong geomagnetic storm in this region does not appear
to be essentially accompanied by enhanced ionospheric absorption.
But curiously, another study using superposed epoch analysis
appeared to show an after-effect in ionospﬁerlc absorption for major
geomagnetic without Storm Sudden Commencement (SSC) (Marcz
and Lastivicka, 1995). This result was the impetus I needed to
continue my investigation since as I have earlier commented in this
lecture that I was not satisfied with my earlier results, and still felt
that more work needed to be done to unravel this equatorial
ionospheric phenomenon. This urge for further investigation was

=)
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more so because | had in Chukwuma (1999_b_) sought a direct
relationship between planetary geomagnetic activity and radio wave
absorption without taking into account an earlier observed
deficiency (Chaman- La,l.2000; Svalgaard, 1976) in the planetary
index of geomagnetic activity.

Now settled in my new paradigm, I reanalyzed my HF absorption
data, Considering this time variations in HF absorption within five
days of marked change in geomagnetic activity. In the hope of
obtaining the clearest possible relationship between geomagnetic
activity and ionospheric radio wave absorption, severe storms were
selected in favour of weak and moderate storms with days of Ap> 54
chosen as key days. The key days were also chosen with an additional
criterion that ensured that the key days were preceded by relatively
magpetic quiet condition (Oyinloye, 1988), and this resulted in a
selection of well separated storms reaching distinct peak values
(Marcz, 1983). Thereafter, following Bourne and Hewitt (1968),
Lauter and Knuth (1967) and Marz (1983), I applied the superposed
epoch technique on my HF absorption data that were obtained on the
key days and the respective five days before and after the key days.
The results of my effort this time are presented below.

2.2.1 Results

$ 5 <4 3 2101 2 3 45 6
Day 6 € 2.3 .2 16 1 2 3 2 £ 8
Day

Figurg 2.9.Left: Variations in geomagnetic activity and ionospheric absorption
around all server storms (ASS); Right: Variations in geomagnetic activity and
lonospheric absorption around severe storms with storm sudden commencement
(SSC) (after Chukwuma, 2001a)
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Figure 2.9 (left panel) shows the result from superposed epoch
analysis of mean changes in geomagnetic activity and HF absorption
around all severe storms. It is evident that the result appears to
indicate HF absorption in the equatorial ionosphere increasing on
the second day following severe geomagnctic storm. Figurec2.9
(right panel) represents the result of another superposed analysis of
geomagnetic activity and ionospheric HF absorption, but in the case
of selected major storms with SSC. Presently, the result also shows
that equatorial ionospheric absorption increases on the second day
following the highest geomagnetic activity. pif
The results presented in Figure 2.9 went against the resglts of
previous investigations in the equatorial region. The differing results
arose, as | had earlier remarked, because the previous criterion of
selecting storms was prominently in favour of weak storms (K, 30).
According to Vats (1992), geomagnetic storms are caused by two
kinds of fast streams; the flare associated fast streams consisting of
dense magnetized plasmoids produce stronger disturbances than the
coronal associated streams WEiCh, have similar high speeds and, are
composed of relatively lower plasma density (Chukwuma, 2001a).
This fact validated my method of analysrs.

¥

The increase in absorption (Chukwuma, 2001a), which occurred on
the second day, appear to suggest that the origin of the enhancement
in absorption may be the same as that of the middle European
latitudes which do not occur on the key day but after 2-4 days
(Bourne and Hewitt, 1968; Lauter and Knuth, 1967). This increase in
absorption may be due to direct and / or secondary effects of particle
precipitation (Marcz, 1976) because Maih (1989) had reported the
precipitation of low energy particles at low altitude in the equatorial
region. Furthérmore, the absorption of solar wind energy, which is
responsible for geomagnetic activity, has the same phase all over the
globe (Chaman-Lal.2000). :

As if to establish the occurrence of radio wave absorption beyond
doubt, I in the work Chukwuma (2001b) found that enhancement 1n
absorption following major storms could be traced to the low
latitude of 3.40 °N. This observed enhancement of HF absorption
that was reported for first time by me, was according to Chykwuma
(2001b), due to direct and/ or secondary effects of pgrthle
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(2001b), due to direct and/ or secondary effects of particle
precipitation because the after-effects in ionospheric absorption are
due to electron precipitation from the magnetosphere in the lower
ionosphere following certain storms (Lauter and Knuth, 1967), and
precipitation of low energy particles at low altitude in the equatorial
region (Maih, 1989).

Mr. Vice Chancellor Sir, according to Huang and Cheng (1993),
Walker and Wong (1993), Buresova and Lastovicka (2001), and
Danilov (2001) geomagnetic storms are as a result of solar wind
energy captured by the magnetosphere and transformed and
dissipated 1n the auroral region ionosphere as heating energy by the
processes of (i) Joule heating of auroral electrojet, (i1) Precipitation
of energetic particles and (i11) Low energy particle precipitation of
subauroral latitude. Thereafter, equatorward winds transport this
ionization to lower latitudes from the auroral region. In this regards,
the works of the above mentioned scientists appear to suggest that
solar wind energy is not dissipated in the equatorial region.
Therefore, given that the results of my works, Chukwuma (2001a,
2001b), clashed with the works of Gnanalingam (1974) and
Chukwuma (1999) as well as those of Huang and Cheng (1993),
Walker and Wong (1993), Buresova and Lastovicka (2001), and
Danilov (2001), I hereby atfirm that my conclusions in Chukwuma
(2001a, 2001b) met Popper's criteria for scientific statement. And
with my results, would anybody dispute this conclusion?

28
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3.0 Ionospheric Storms

|
|

Geographic Geomagnetic Difference
Sector/Station coordinates co-ordinates between LST
and UT
) A ) A (in hours)
East Asian
R erisholt 49.60°N |117.50°E | 3562°N |207.3°E +8
Manila 147°N [121.1°E | 405°N |191.9°E +8
Chongging 29.50°N " [ 106.40°E | 29.72°N | 206.7°E 47
 onestio 23.10°N | 113.40°E | 2570°N |206.7°E +8
b aiion 1830°N |109.30°E | 1545°N |196.4°E +7
Akl 458°N |141.7°E  |3599°N |208.1°E +9
]A):rsvt;:ho 12.50°N | 131.00°E  [357°N | 191.1°E 9
A 21.90°N 114.00213 —32.582N 187.10°E +8
B s 32.00°N | 116.40°E | 42.61°N | 190.20°E +8
European/Africa
Slough 54.50°N [357.60°E |56.72°N | 86.20°E 0
Juliusrub/Rugen | 54 60°N | 13.40°E | 56.89°N | 103.80°E 0
Rome 41.80°N |12.50°E | 47.12°N |92.80°E +0
Athens 38.00 °N [23.50°E | 36.09°N | 104.20°E +1
Grahamstown 3330°N |26.50°E | -34.31°N | 91.70°E +
Ouagadougou 124°N [153°E | 1542°N |753°E 0
American
Goosebay 53.30°N [-60.40°E |5668°N |353.0°E 4
Milestone Hill 42.60°N |-71.50°E |4893°N |318.2°E 5
Wallops Island 37.80°N [-75.50°E |4232°N |302.4°E 5
Puerto Rico 18.50°N |-67.20°E | 4232°N |302.40°E 4
Jicamarca -12.10°N [-77.00°E | -0.98°N |355.70°E -5
Churchill 58.8°N |2658°E | 6844°N |326.5°E 6

Table 3.1.SPIDR (Space Physics Interactive Data Resource) global network of

ionosndes
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Mr. Vice Chancellor Sir, given that myworks (Chukwuma, 2001a,

2001b) which examined geoma%netic storm after-effect on radio
wave absorption in the equatorial region found that that radio wave
absorption 1n the low latitudes increased after major geomagnetic
storms as has been observed in the mid- and high latitudes (Bourne
and Hewitt, 1968; Marcz, 1976, 1983; Marcz and Lastovicka, 1995;
Pig%ot, 1964), it did appear to me that major geomagnetic storms
could adversely influence the performance and reliability of ground-
based technological systems and can endanger human life or health
in our re%ion. In this respect, I sought to show if there existed some
degree of simultaneity in global response of the ionosphere to major
geomagnetic disturbances. This I did by investigating F2 region
global structure response to geomagnetic storms using hourly values
of foF2 data obtained during the very intense geomagnetic storm
(D,= -600 nT) of March 13-15, 1989 from SPIDR ionospheric
stations (Table 3.1). Remarkably, results of this investigation, as
presented by Fig. 3.1 (Chukwuma, 2003a), showed that all the
stations under study indicated some high degree of simultaneity in
global response of the ionosphere to major geomagnetic
disturbances. Furthermore, the results, by the geographical reach of
the ionospheric stations (as shown in Table 3.1) indicated that global
ionospheric response extended to a latitude as low as 12.4° N. This
was a profound discovery.

Insightful as the results of Chukwuma (2003a) were, its
characterization as a seminal work required a validation using the
data of another intense storm. This I did with the storm of October
20-21, 1989 (D, =-266 nT); the result of analysis of the foF2 data of
this particular intense storm as reported in Chukwuma, (2003b)
showed that global response of the 10nothere was restricted to the
mid- and high latitude, and lacked simultaneity but confirmed the
suggestion of Chukwuma (2003a) that the F2 region global structure
response during the super storm of March 13-15, 1989 may be due to
the very intensive nature of that particular storm. It is noteworthy
that the geomagnetic storm of March 13-15, 1989 is one of the

largest storms in last 50 years and had profound effects on earth and

in space. Power systems in Canada and Sweden failed as large
electric currents were induced in Fower lines and tripped protective
relays (Bolduc, 2002; Cliffswallow, 1993: Czech et al., 1992;

r
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1992:; Kappenman and Albertson, 1990). Increased atmospheric
drag resulting from the expansion of the Earth's outer atmosphere
during the disturbance altered the orbits of many satellites with the
result that NASA lost track of some of them for a short period.
Satellite navigation systems failed to operate and High Frequency
(HF) communication systems were also out of action (Cliffswallow,
1993). And aurorae were sighted at quite equatorial latitudes. Figure
3.2 presents the impacts the geomagnetic storm of March 13-15,
1989.

vﬁ* \
LA A

10 15 20
Day March 1989

Figure 3.2. Impact of Space Weather:Left- Severe Internal damage of the PIM
Public Service Step-Up Transformer by March 13,1989 Geomagnetic Storm ©

mordernsurvivlablog.com Right-Satellite Tracking Problem ©
ccar.colorado.edu

3.1  ThePre-storm Ionospheric Phenomena

Mr. Vice Chancellor Sir, the F region response to a geomagnetic
storm that is known as ionospheric storm consists of positive and
negative phases. According to Danilov (2001), the principal features
of the positive and negative phase distribution and variations have
been explained on the basis of the principal concept: during a
geomagnetic disturbance there is an input of energy into the polar
atmosphere, which changes thermospheric parameters such as
composition, temperature and circulations. Composition changes

73" Inaugural Lecture —(32)—

The circulation spreads the heated gas to lower latitudes. The
conflict between storm-induced circulation and the regular one
determines the spatial distribution of the negative and positive
phases in various seasons (Chukwuma, 2003b). However, there are
still some unresolved problems; two of the acute ones, according to
Danilov (2001), are the appearance of positive storm before the
beginning of a geomagnetic storm in the mid latitudes and the
occurrence of negative phase at the equator. These problems are now
known as pre-storm phenomena. However, these phenomena that
appear to be rare geophysical events could be classified as
potentially high impact, but low probability natural hazard.

To study the validity of the existence of the pre-storm phenomena, I
did a community analysis of the intense geomagnetic storms of April
1-2, 1973(D, =-211) whose resulting ionospheric storm was
worldwide and extended to very low Tatitudes, the very intense
March 13-15, 1989 storm (D,= -600 nT) and the storm of October
20-21,1989 (D, =-266 nT). The last two storms occurred during two
remarkable periods of the maximum phase of solar cycle 22 and
whose geomagnetic and ionospheric phenomena are of‘c_onyderab.le
interest for the understanding of the morphology of ionospheric
storms, as well as solving of technological problems.

: !
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The results of my effort (Fig. 3.3) (Chukwuma, 2007a), confirmed
the existence the pre-storm as a geomagnetic phenomenon. In the
light of my results, and in regards to the suggestion by Danilov
(2001) that pre-storm phenomena are still some unsolved problems,
I went on to profoundly report in Chukwuma (2007a) that the non-
explanation of pre-storm phenomena is because in the studies of
jonospheric storms, it is assumed that the beginning of the
disturbance is defined by storm sudden commencement or main
phase onset (MPO) which as a scheme restricted the
geoeffectiveness of the solar wind to post onset time thereby fore-
closing the explanation of any aspect of the morphology of
jonospheric storms whose origin precede the onset reference time. It
is important to note, 1 argued, that the use of sudden storm
commencement (SSC) as a reference time constitute a poor choice
(Prolss, 1995) because these impulse-like disturbance of the
magnetic field are not associate with any significant energy
deposition and are also observed after the onset of a magnetic storm,
as indicated, for example, by the decrease in the Dst index (Akasofu,
1970); also the use of the main phase onset (MPO) for fixing the
beginning of magnetic and ionospheric storms is fraught with
problems that render a determination of the exact onset time difficult
(Prolss, 1995). And permit me Mr, Vice Chancellor Sir, to add that
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this postulation of mine still stands, but my work was not yet done.

3.2. Further Explanations of Storms

Letus recall that I had earlier presented the results of my work of the
remarkable periods of the solar cycle 22: the storm of March 13-
14(Dst = -600 nT) that indicated simultaneity of global ionospheric
response, and another intense storm of lesser magnitude, the October
20-21, 1989 storm(D st =-268 nT)which showed that the depletion of
foF2 was restricted to the high and middle latitudes, lacked universal
time dependence and simultaneity but diminished in amplitude
towards the lower latitude (Chukwuma, 2003b). I want us to note
that in line with the definition of physics, the results of the
aforementioned studies differing as they were required
reconciliation or as the case may be validation as way to
understanding global F2-region response during severe storms.

Now in other to explain global F2-region response during severe
storms, I undertook a further investigation into global ionospheric
responses during intense geomagnetic activity using a set of
scientific criteria (Chukwuma, 2007b) that led to the choice of the
intense storm of July 13-15, 1982 (D, = -325 nT). And my results
some of which are presented below in Fi gures 3.4 and 3.5 proved that
that an intense storm was caused primarily by large increases in solar
wind dynamic pressure. This is evident in the fact that the depletion
of foF'2 during the main phase of the storm was strongly dependent
onthe solar wind dynamic pressure, Furthermore, the simultaneity of

JoF2 depletion at the mid and low latitudes was not consistent with

the previously held view that the mechanism for depletion of F2-
region plasma density was changes in neutral composition resulting
from neutral wind which is produced prcdominant{)y in the region of
Joul¢ heating in the aurora zone, but rather suggests that particle

precipitation could account for the composition changes that caused

the abrupt depletion. at the ionospheric stations. My estecemed
audience, these are insightful conclusions that have contributed
immensely to the understanding of geomagnetic storms.
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(Chukwuma, 2007b)
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3.3. Solar Activities, Flare and Storms

Mr. Vice Chancellor Sir, the upper atmosphere is known to be ver
sensitive to solar eruptions-flares and coronal mass ejections- which
are more prevalent during the maximum and declining solar cycle
hases than during the mmimum. Space weather of this nature can
Eave severe and sudden impacts on technology, such as damaging
ground-based power systems (e.g., blackouts) and disrupting Global
Positioning System (GPS) systems over significant regions. The
severe and sudden impacts of space weather on technology, as [ have
pointed out earlier in this lecture, were demonstrated during March
1989 which came as one of the remarkable periods of the maximum
phase of solar cycle 22. After this period, the epoch around 2008
expectedly presented space physicists research opportunities as the
sun being at solar minimum, marked the end of solar cycle 23 and the
beginning of cycle 24. It's important to submit that the research
opportunities of this era were in regard to the predictions of Dikpati
and Gilman (2006) that solar activity is expected to be 40% stronger
in cycle 24 than it was in cycle 23. Now, with man's daily life
increasingly dependent on technology which is susceptible to space
weather, the expectation of increased solar activity in solar cycle 24

E §§ ertinently demanded that the helio-physical and interplanetar
g :2‘;,3 /\: (\m’i\ " " N grivers of space weather are understood before the commencemen};
§§f‘ b T W ESTNIO GR g of the cycle (Chukwuma, 2009).
e In the light of this demand, it was imperative that space physicists
g HPSON examined the heliophysical and geophysical phenomena of some
- periods in the earlier cycles that are characterised by intense solar
activity. And fortunately within the then departing solar cycle 23,

two intervals of time uniquely offered this opportunity with recorded
high level of solar activity. Firstly was the Halloween events of
October 28-November 4, 2003, and the second was the helio-
physical and geophysical phenomena of November 20-21, 2003.
Solar active region (AR) 484, 486 and 488 were responsible for the
Halloween events. AR 486 containing the maximum number of
sunspots in cycle 23 was the most active of the three regions and
produced the greatest flare (X28.0) on November 4 and was also
responsible for the X17.2 flare of October 28 as well as the X10.0
flare of October 29, 2003. The solar activity during November 20-21
was due to active regions 501, 506 and 508 of which AR 501 was

73" Inaugural Lecture {41)=




21 was due to active regions 501, 506 and 508 of which AR 501 was
most active producing the M9.6 and M5.8 flare of November 20.
I Ehese flares caused the super s@ormlof Noreggber c%g This slt)()mS] is e NOAL
| the greatest geomagnetic storm 1n solar cycle 235 and has number S 1n o (LT ; - Aclv $ oo
the lgist of 22gsuper-%torms that occurred b}étween 1957 and 2004 with i i i e Aoge
‘ minimum D, respectively reaching -300 nT. Given that the T8 pods £53 NDYECS 433
| Halloween 2003 events have been the subject of many studies (e.g., 12 p0se C63 NS 3 31
| Blagoveshchensky, et. al.,, 2006; Brodrick, et. al., 2005; 52 5112 e s S10% 15 154
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Top: Table 3.2 Characteristics of Solar X- rays flares during November 20-21, 0l ek Lad i 3
2003. Below:: Table 3.3 Characteristics of Solar X- rays flares during October 28-
31,2003(Chukwuma, 2009).
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M ’ And significantly, the results (Tables 3.2, 3.4 and 3.4; Figures 3.6 10403 11403 11503 11503 11603 11603 10703 11703 11803 11/8003
/| and 3.7) of my investigation of the heliophysical and geophysical 000 1200 000 1200 000 1200 000 1200 000 1200
| phenomena during the high solar activigr period in October- 50 - Time (UT)
November 2003 (Chukwuma, 2009) showed that very large X class
flares may not cause very intense geomagnetic storms as would flares
of M importance, and underscore the fact that the initiation of a space A
weather events is a problem in the solar physics community which 0 T — : i : e
re(iuire distinct efforts focussing on flares and CMEs separately £ /J W
(Alexander (2007). >
(a]
50
100 /
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Cyele 24 Sunspot Number (V2.0) Prediction (20158 11)

Hathaway NASAARL

Figure 3.8 Sunspot Cycle Predictions © NASA

Presently, Figure 3.8 showing the sun in 2013 at the maximum of
Solar Cycle 24 indicates there are far fewer sunspots during this peak
than there have been in past cycles; a result which postulates the
failure of the predictions of Dikpati and Gilman (2006) that sola
activity is expected to be 40% stronger in cycle 24 than it was in cycle
23 and significantly supports the results and conclusions of
Chukwuma (2009).

[ also want to note for the benefit of this esteemed august audience
that the results of my work as reported in Chukwuma (2009) did
suggest that the solar wind structure that was responsible for the
major storm of November 20-21, 2003 is of the shock-driver gas
configuration in which the sheath is the most geoeffective element
(even more geoeffective that the Coronal Mass Ejection (CME)
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itself) that is responsible for storms. Another important result of
Chukwuma (2009) confirmed earlier results that appear to show that
ressure enhancement does not cause the direct injection of new
partycles into the ring current region; rather it causes a local adiabatic
energization of the particles already within the ring current region.

My distinguished audience, I have earlier emphasised the
importance of space weather research for scientific and
technological innovations. However, a global review of literature on
the mechanism responsible for the pre-storm and main phase global
ionospheric phenomena during geomagnetic disturbance appeared
to indicate that the phenomena were still not fully understood. For
example, following the results of Chukwuma (2007a) where I had
asserted the non-explanation of pre-storm phenomena, Mikhailov
and Perrone (2009) disagreed witﬁ me and reported that there are no
convincing arguments that pre-storm phenomena at middle and sub-
auroral latitudes bear a relation to magnetic storms. According to
Mikhailov and Perrone (2009), the ionospheric F2 peak electron
density pre-storm enhancements were due to a previous
geomagnetic storm, moderate auroral activity or they represented
the class of positive quiet time events and as such there is no such
effect as the pre-storm peak electron density enhancement as a
phenomenon inalienably related to the geomagnetic storms. Their
position as it were translated to a duel of some sort.

Now, it is pertinent | remarked that in their investigation, Mikhailov
and Perrone (2009) assumed a criterion for selecting pre-storm
phenomenon which is that a pre-storm F2 peak electron density
enhancement should precede the magnetic storm onset and takes
place within a reasonable time interval (say, within 24 hours before
the Storm Commencement), develop under quiet geomagnetic
conditions and if an observed peak electron density increase does not
correspond to this requirement, there is no reason to consider it a pre-
storm enhancement. However, it is reasonable to affirm, my dear
audience, that though Mikhailov and Perrone (2009) considered
intervals of moderately enhanced auroral activity as disturbed
periods, they did not ascertain whether such pre-storm auroral

" activity is related to the following magnetic storm (Chukwuma,

2010). Hence, their postulation appeared to be lacking in phenomena
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» physics which is by definition the logical explanation of the physical
processes and phenomena of'a particular structure.

Now clearly bothered by the lack of symmetry of the various
investigations of mechanisms responsible for the pre-storm and main
phase global ionospheric phenomena during geomagnetic
disturbances, I began a study of these phenomena, especially with
respect to the role of penetration electric fields. For this
investi]%ation, I used heliophysical, interplanetary, geomagnetic and
ionospheric data from the November 20-21, 2003 storm. The choice
of this particular storm was informed by the results of Chukwuma
(2009) which have shown that the configuration and scale of the
interplanetary magnetic field during the storm are indicative of
strong penetration electric fields which have profound effects on the
redistribution of the global ionospheric plasma tlizi 1ts field uplifts in
the evening equatorial ionosphere (Huang, 2008). The results of this
investigation (Figures 3.9 and 3.10), which I reported in Chukwuma
(2010), showed that ionospheric responses in the main phase of the
storm do not indicate prompt penetration electric fields as the main
ionospheric storm driver. Furthermore, the results demonstrated that
pre-storm phenomena's origin doesn't derive from local time effect.
Also the simultaneous occurrence of foF2 enhancements at two
widely separated longitudinal zones (Australian and American
sectors) of the Earth appeared to suggest a role by the
magnetospheric electric field. But the ana§ sis of hmF2 at the
Australian sector could not confirm these fields as main drivers of
pre-storm phenomena. An investigation of flare effects on the pre-
storm phenomena also revealed that solar flares are not the main
drivers of these phenomena.

rd (a8 L
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Figgre 3.9: Variations in D (foF2) for East Asian sector (Top) and European/
African sector (below) for November 20-21, 2003 (Chukwuma, 2010).
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henomena's characteristics and controlling mechanism still

resents an unresolved problem in ionospheric physics. However,
et me also observe that the very existence of pre-storm ionospheric

henomena appear to strongly indicate that preceding the arrival of a
shock at the magnetosphere are some coup ing mechanism between
interplanetary features and the thermosphere-ionosphere system by
which the solar wind continual modifies the dynamics,
electrodynamics and chemistry of the Earth's ionosphere on a global
level (Chukwuma, 2010).

D(foF2ix100%

Finally, Mr. Vice Chancellor Sir, I had remarked at the beginning of
my lecture that my contributions are steeped in the twin phenomena
ofy fertility and birth which give life through love and pain. I want to
assert that the manifestation of this claim is not limited to my
continued research towards a better understanding of the
ijonospheric phenomena but in the training of a generation of young
physicists with whom I have extended the frontiers of knowledge on
the ionospheric phenomena by undertaking to elucidating night time |
ionization and electron transportation process in the ionosphere by
our investigation of the global response of the ionospheric region to
total solar eclipse. This is because eclipse presents an
approximation of night-time behaviour of ionospheric F2 layer
during the daytime (Adekoya and Chukwuma, 2012; Adekoya,
Chukwuma, and Reinisch, 2015; Adekoya B. J. and V. U.
Chukwuma, 2016). Recently, our efforts showed that vertical drift is
~one of the essential factors responsible for ionospheric F2
redistribution during and before/after solar eclipses, and suggested
o ol that the equatorial/low-latitude ionosphere during a solar eclipse is
TR significantly affected by the E x B vertical drift, because larger

Figure 3.10: Variations in D (foF2) for Australian sector (Top) and American ggpﬁetllqn %f el%CtronhdeﬁlSIt%, at low alftltlidc?s_ fcag bg trafl Sportlf d to
sector for November 20-21, 2003 (Chukwuma, 2010). 1gh altitudes through the plasma vertical drift. And as 1 speak, we
are eagerly awaiting the publication, in highly reputable journals, of

our recent results on the morphology and dynamics of plasma in the

I want to affirm at this point that these results of Chukwuma (2010) & g:’«icil_ll)?gtt%d:;ggoiflpt};leereeSﬁ;is%ggﬁgosrgleggaercrllipSé?{;(lj:élr{ge;rlllglolreﬁgg
taken together with earlier results do appear to suggest that pre-storm contributed, with commendable success, to tze elucidation of the
ionospheric phenomena could be the result of some underlying 2 ;

mechanisms that are working together to produce the observed storm gsponse of the iono.spheric phenomena to geomagnetic storms in
effects, and their relative importance differs from case to case (Lei et tlée following works: Chukwuma, V. U. (2005), Chukwurréa,L\;-w gl
al., 2008; Zhao et at., 2008). And as such, the real nature of the (2006), Chukwuma and Bakare (2006), Chukwuma an

{50 }— 73" Inaugural Lecture (51}
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(2007), Adebesin and Chukwuma (2008), Bakare, Chukwuma and
Adekoya (2010), and David and Chukwuma, (2012).

Mr. Vice Chancellor Sir, I hope I have met with success in sustaining
my theme by presenting a unified, and cumulative thesis in this
lecture and therefore, hereby request you in your favourable
consideration to discharge and acquit me ofy my academic debt.
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